Towards Learning by Demonstration for Industrial Assembly Tasks

Author:

Hernandez Moreno Victor,Carmichael Marc G.,Deuse Jochen

Abstract

AbstractIn recent times, learning by demonstration has seen tremendous progress in robotic assembly operations. One of the most prominent trajectory-level task models applied is Dynamic Movement Primitives (DMP). However, it lacks the ability to tackle complex operations as often encountered in industrial assembly. Augmenting low-level models with a high-level framework in which different movement segments are deliberately parameterised is considered promising for such scenarios. This paper investigates the combination of trajectory-level DMPs with Methods-Time Measurement (MTM). We demonstrate how the MTM-1 system is utilised to establish distinguished DMP models for five of its basic elements, paving the way to benefitting from the sophisticated MTM system. The evaluation of the framework is conducted on a generic pick and place operation. Compared to a one-model-fits-all DMP approach for the whole task, the proposed method shows the advantage of appropriate temporal scaling, accuracy levelling and force consideration at adequate times.

Publisher

Springer International Publishing

Reference17 articles.

1. Pedersen, M.R., Nalpantidis, L., Andersen, R.S., Schou, C., Bøgh, S., Krüger, V., Madsen, O.: Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput.-Integr. Manuf. 37, 282–291 (2016)

2. Wilke, C.B.: Demografie und Arbeitsmarkt. Wirtschaftsdienst 96(3) (2016)

3. Billard, A.G., Calinon, S., Dillmann, R.: Springer handbook of robotics. In: Springer Handbook of Robotics, chap. Learning f, 2nd edn., pp. 1995–2014. Springer, Berlin (2016)

4. Xu, J., Hou, Z., Liu, Z., Qiao, H.: Compare contact model-based control and contact model-free learning: a survey of robotic peg-in-hole assembly strategies. arXiv (March), 1–15 (2019)

5. Saveriano M., Abu-Dakka F.J., Kramberger A., Peternel L.: Dynamic movement primitives in robotics: A tutorial survey. arXiv preprint arXiv:2102.03861 (2011). 7. Feb 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3