Abstract
AbstractCustomer journey analysis is important for organizations to get to know as much as possible about the main behavior of their customers. This provides the basis to improve the customer experience within their organization. This paper addresses the problem of predicting the occurrence of a certain activity of interest in the remainder of the customer journey that follows the occurrence of another specific activity. For this, we propose the HIAP framework which uses process mining techniques to analyze customer journeys. Different prediction models are researched to investigate which model is most suitable for high importance activity prediction. Furthermore the effect of using a sliding window or landmark model for (re)training a model is investigated. The framework is evaluated using a health insurance real dataset and a benchmark data set. The efficiency and prediction quality results highlight the usefulness of the framework under various realistic online business settings.
Publisher
Springer Nature Switzerland
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献