Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction

Author:

Kratsch Wolfgang,Manderscheid Jonas,Röglinger Maximilian,Seyfried Johannes

Abstract

AbstractPredictive process monitoring aims at forecasting the behavior, performance, and outcomes of business processes at runtime. It helps identify problems before they occur and re-allocate resources before they are wasted. Although deep learning (DL) has yielded breakthroughs, most existing approaches build on classical machine learning (ML) techniques, particularly when it comes to outcome-oriented predictive process monitoring. This circumstance reflects a lack of understanding about which event log properties facilitate the use of DL techniques. To address this gap, the authors compared the performance of DL (i.e., simple feedforward deep neural networks and long short term memory networks) and ML techniques (i.e., random forests and support vector machines) based on five publicly available event logs. It could be observed that DL generally outperforms classical ML techniques. Moreover, three specific propositions could be inferred from further observations: First, the outperformance of DL techniques is particularly strong for logs with a high variant-to-instance ratio (i.e., many non-standard cases). Second, DL techniques perform more stably in case of imbalanced target variables, especially for logs with a high event-to-activity ratio (i.e., many loops in the control flow). Third, logs with a high activity-to-instance payload ratio (i.e., input data is predominantly generated at runtime) call for the application of long short term memory networks. Due to the purposive sampling of event logs and techniques, these findings also hold for logs outside this study.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

Reference72 articles.

1. Augusto A, Conforti R, Dumas M, La Rosa M, Maggi FM, Marrella A, Mecella M, Soo A (2019) Automated discovery of process models from event logs: review and benchmark. IEEE Trans Knowl Data Eng 31(4):686–705

2. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neur Netw 5(2):157–166

3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

4. Bishop CM (2010) Pattern recognition and machine learning. Springer, New York

5. Bose JCB, van der Aalst WMP (2011) Analysis of patient treatment procedures: the BPI Challenge case study. In: BPM Workshops 2011 Proceedings. Clermont-Ferrand

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3