Author:
Kratsch Wolfgang,Manderscheid Jonas,Röglinger Maximilian,Seyfried Johannes
Abstract
AbstractPredictive process monitoring aims at forecasting the behavior, performance, and outcomes of business processes at runtime. It helps identify problems before they occur and re-allocate resources before they are wasted. Although deep learning (DL) has yielded breakthroughs, most existing approaches build on classical machine learning (ML) techniques, particularly when it comes to outcome-oriented predictive process monitoring. This circumstance reflects a lack of understanding about which event log properties facilitate the use of DL techniques. To address this gap, the authors compared the performance of DL (i.e., simple feedforward deep neural networks and long short term memory networks) and ML techniques (i.e., random forests and support vector machines) based on five publicly available event logs. It could be observed that DL generally outperforms classical ML techniques. Moreover, three specific propositions could be inferred from further observations: First, the outperformance of DL techniques is particularly strong for logs with a high variant-to-instance ratio (i.e., many non-standard cases). Second, DL techniques perform more stably in case of imbalanced target variables, especially for logs with a high event-to-activity ratio (i.e., many loops in the control flow). Third, logs with a high activity-to-instance payload ratio (i.e., input data is predominantly generated at runtime) call for the application of long short term memory networks. Due to the purposive sampling of event logs and techniques, these findings also hold for logs outside this study.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Augusto A, Conforti R, Dumas M, La Rosa M, Maggi FM, Marrella A, Mecella M, Soo A (2019) Automated discovery of process models from event logs: review and benchmark. IEEE Trans Knowl Data Eng 31(4):686–705
2. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neur Netw 5(2):157–166
3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305
4. Bishop CM (2010) Pattern recognition and machine learning. Springer, New York
5. Bose JCB, van der Aalst WMP (2011) Analysis of patient treatment procedures: the BPI Challenge case study. In: BPM Workshops 2011 Proceedings. Clermont-Ferrand
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献