VaryMinions: leveraging RNNs to identify variants in variability-intensive systems’ logs

Author:

Fortz SophieORCID,Temple PaulORCID,Devroey XavierORCID,Heymans Patrick,Perrouin GillesORCID

Abstract

AbstractFrom business processes to course management, variability-intensive software systems (VIS) are now ubiquitous. One can configure these systems’ behaviour by activating options, e.g., to derive variants handling building permits across municipalities or implementing different functionalities (quizzes, forums) for a given course. These customisation facilities allow VIS to support distinct relevant customer requirements while taking advantage of reuse for common parts. Customisation thus allows realising both scope and scale economies. Behavioural differences amongst variants manifest themselves in event logs. To re-engineer this kind of system, one must know which variant(s) have produced which behaviour. Since variant information is barely present in logs, this paper supports this task by employing machine learning techniques to classify behaviours (event sequences) among variants. Specifically, we train Long Short Term Memory (LSTMs) and Gated Recurrent Units (GRUs) recurrent neural networks to relate event sequences with the variants they belong to on six different datasets issued from the configurable process and VIS domains. After having evaluated 20 different architectures of LSTM/GRU, our results demonstrate that it is possible to effectively learn the trace-to-variant mapping with high accuracy (at least $$80\%$$ 80 % and up to $$99\%$$ 99 % ) and at scale, i.e., identifying 50 variants using 5000+ traces for each variant.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3