1. Amit, Y., Dekel, O., Singer, Y.: A boosting algorithm for label covering in multilabel problems. In: In Proceedings of International Conference AI and Statistics (AISTATS), pp. 27–34 (2007)
2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems 28, pp. 730–738. Curran Associates, Inc. (2015)
3. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings 22nd International Conference on Knowledge Discovery and Data Mining (KDD), p. 785–794 (2016)
4. Cheng, W., Hüllermeier, E., Dembczyński, K.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of 27th International Conference on Machine Learning (ICML), pp. 279–286 (2010)
5. Dembczyński, K., Kotłowski, W., Hüllermeier, E.: Consistent multilabel ranking through univariate losses. In: Proceedings of 29th International Conference on Machine Learning (ICML), pp. 1319–1326. Omnipress (2012)