Author:
Ciaperoni Martino,Xiao Han,Gionis Aristides
Abstract
AbstractMulti-label classification is becoming increasingly ubiquitous, but not much attention has been paid to interpretability. In this paper, we develop a multi-label classifier that can be represented as a concise set of simple “if-then” rules, and thus, it offers better interpretability compared to black-box models. Notably, our method is able to find a small set of relevant patterns that lead to accurate multi-label classification, while existing rule-based classifiers are myopic and wasteful in searching rules, requiring a large number of rules to achieve high accuracy. In particular, we formulate the problem of choosing multi-label rules to maximize a target function, which considers not only discrimination ability with respect to labels, but also diversity. Accounting for diversity helps to avoid redundancy, and thus, to control the number of rules in the solution set. To tackle the said maximization problem, we propose a 2-approximation algorithm, which circumvents the exponential-size search space of rules using a novel technique to sample highly discriminative and diverse rules. In addition to our theoretical analysis, we provide a thorough experimental evaluation and a case study, which indicate that our approach offers a trade-off between predictive performance and interpretability that is unmatched in previous work.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scalable Rule Lists Learning with Sampling;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24