Neuromorphic Circuits with Redox-Based Memristive Devices

Author:

Zahari Finn,Ziegler Martin,Doerwald Pouya,Wenger Christian,Kohlstedt Hermann

Abstract

AbstractThis chapter addresses opportunities for memristive devices in the framework of neuromorphic computing. Memristive devices are two-terminal circuit elements, comprising resistance and memory functionality. This simple and likewise ingeniously concept allows beneficial applications in numerous neuromorphic circuits. However, the electrical characteristics as well as the materials and technological framework of memristive devices need an optimization for each specific application. The chapter starts with a short overview of basic principles of biological data processing followed by a taxonomy of different bio-inspired computing architectures, divided into time-dependent and time-independent concepts. Furthermore, the requirements on particular memristive device properties, such as $$I\text {-}V$$ I - V linearity, switching time, retention, number of states, time-dependency, and device variability, are discussed. The results of tangible examples of digital and analog memristive switching devices used in a deep neural network based on CMOS-integrated resistive random access memory devices (RRAMs) for chronic obstructive pulmonary disease (COPD) detection, in stochastic learning, in bio-inspired analog learning, and, finally, in oscillatory computing are presented and discussed.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3