Publisher
Springer International Publishing
Reference45 articles.
1. Adams, B.M., et al.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.5 User’s Manual. Sandia National Laboratories, Albuquerque/Livermore (2016). https://dakota.sandia.gov/
2. Ansel, J., et al.: PetaBricks: a language and compiler for algorithmic choice. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 38–49. Association for Computing Machinery, New York (2009)
3. Ansel, J., et al.: OpenTuner: an extensible framework for program autotuning. In: Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, pp. 303–316. Association for Computing Machinery, New York (2014)
4. Ashouri, A., Mariani, G., Palermo, G., Park, E., Cavazos, J., Silvano, C.: COBAYN: compiler autotuning framework using Bayesian networks. ACM Trans. Archit. Code Optim. (TACO) 13, 1–26 (2016)
5. Audet, C., Dang, C.-K., Orban, D.: Algorithmic parameter optimization of the DFO method with the OPAL framework. In: Suda, R., Naono, K., Teranishi, K., Cavazos, J. (eds.) Software Automatic Tuning, pp. 255–274. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6935-4_15
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hyperparameter autotuning of programs with HybridTuner;Annals of Mathematics and Artificial Intelligence;2022-05-18