1. Adams, B.M., Ebeida, M.S., Eldred, M.S., Geraci, G., Jakeman, J.D., Maupin, K.A., Monschke, J.A., Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hooper, R.W., Hu, K.T., Hough, P.D., Ridgway, E.M., Rushdi, A.: DAKOTA, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.5 User’s Manual. Sandia national laboratories, Albuquerque, NM and Livermore, CA. https://dakota.sandia.gov/ (2016)
2. Ansel, J., Chan, C., Wong, Y., Olszewski, M., Zhao, Q., Edelman, A., Amarasinghe, S.: PetaBricks: A language and compiler for algorithmic choice. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp 38–49. Association for Computing Machinery, New York (2009)
3. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelly, J., Bosboom, J., O’Reilly, U.M., Amarasinghe, S.: Opentuner: An extensible framework for program autotuning. In: Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, pp 303–316. Association for Computing Machinery, New York (2014)
4. Ashouri, A., Killian, W., Cavazos, J., Palermo, G., Silvano, C.: A survey on compiler autotuning using machine learning. ACM Comput. Surv. (CSUR) 51, 1–42 (2018)
5. Ashouri, A., Mariani, G., Palermo, G., Park, E., Cavazos, J., Silvano, C.: COBAYN: Compiler autotuning framework using Bayesian networks. ACM Trans. Archit. Code Optim. (TACO) 13, 1–26 (2016)