COBAYN

Author:

Ashouri Amir Hossein1,Mariani Giovanni2,Palermo Gianluca1,Park Eunjung3,Cavazos John4,Silvano Cristina1

Affiliation:

1. Politecnico di Milano

2. IBM, Dwingeloo, the Netherlands

3. Los Alamos National Laboratory, USA

4. University of Delaware, DE, USA

Abstract

The variety of today’s architectures forces programmers to spend a great deal of time porting and tuning application codes across different platforms. Compilers themselves need additional tuning, which has considerable complexity as the standard optimization levels, usually designed for the average case and the specific target architecture, often fail to bring the best results. This article proposes COBAYN : Compiler autotuning framework using BAYesian Networks, an approach for a compiler autotuning methodology using machine learning to speed up application performance and to reduce the cost of the compiler optimization phases. The proposed framework is based on the application characterization done dynamically by using independent microarchitecture features and Bayesian networks. The article also presents an evaluation based on using static analysis and hybrid feature collection approaches. In addition, the article compares Bayesian networks with respect to several state-of-the-art machine-learning models. Experiments were carried out on an ARM embedded platform and GCC compiler by considering two benchmark suites with 39 applications. The set of compiler configurations, selected by the model (less than 7% of the search space), demonstrated an application performance speedup of up to 4.6 × on Polybench (1.85 × on average) and 3.1 × on cBench (1.54 × on average) with respect to standard optimization levels. Moreover, the comparison of the proposed technique with (i) random iterative compilation, (ii) machine learning--based iterative compilation, and (iii) noniterative predictive modeling techniques shows, on average, 1.2 × , 1.37 × , and 1.48 × speedup, respectively. Finally, the proposed method demonstrates 4 × and 3 × speedup, respectively, on cBench and Polybench in terms of exploration efficiency given the same quality of the solutions generated by the random iterative compilation model.

Funder

European Commission

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring compiler optimization space for control flow obfuscation;Computers & Security;2024-04

2. Compiler Autotuning through Multiple Phase Learning;ACM Transactions on Software Engineering and Methodology;2024-01-11

3. Automatic Selection of Compiler Optimizations by Machine Learning;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05

4. Compiler Test-Program Generation via Memoized Configuration Search;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

5. A Two-Stage Option Sequence Optimization Method for Energy Consumption Minimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3