Abstract
AbstractLet V be a vector bundle over a smooth curve C. In this paper, we study twisted Brill–Noether loci parametrising stable bundles E of rank n and degree e with the property that $$h^0 (C, V \otimes E) \ge k$$
h
0
(
C
,
V
⊗
E
)
≥
k
. We prove that, under conditions similar to those of Teixidor i Bigas and of Mercat, the Brill–Noether loci are nonempty and in many cases have a component which is generically smooth and of the expected dimension. Along the way, we prove the irreducibility of certain components of both twisted and “nontwisted” Brill–Noether loci. We describe the tangent cones to the twisted Brill–Noether loci. We end with an example of a general bundle over a general curve having positive-dimensional twisted Brill–Noether loci with negative expected dimension.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves. In: Vol. I, Volume 267 of Grundlehren der Mathematischen Wissenschaften. Springer, New York (1985)
2. Beauville, A.: Vector bundles on curves and theta functions. In: Moduli Spaces and Arithmetic Geometry. Papers of the 13th International Research Institute of the Mathematical Society of Japan, Kyoto, Japan, September 8–15, 2004, pp. 145–156. Mathematical Society of Japan, Tokyo (2006)
3. Bhosle, U.N., Brambila-Paz, L., Newstead, P.E.: On coherent systems of type $$(n, d, n+1)$$ on Petri curves. Manuscr. Math. 126(4), 409–441 (2008)
4. Bradlow, S.B.: Coherent systems: a brief survey. with an appendix by H. Lange. In: Moduli Spaces and Vector Bundles. A tribute to Peter Newstead, pp. 229–264. Cambridge University Press, Cambridge (2009)
5. Bradlow, S.B., García-Prada, O., Muñoz, V., Newstead, P.E.: Coherent systems and Brill–Noether theory. Int. J. Math. 14(7), 683–733 (2003)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献