Secant loci of scrolls over curves

Author:

Hitching George

Abstract

Given a curve C C and a linear series \ell on C C , the secant locus V e e f ( ) V^{e-f}_e( \ell ) parametrises effective divisors of degree e e which impose at most e f e-f conditions on \ell . For E C E \to C a vector bundle of rank r r , we define determinantal subschemes H e e f ( ) H i l b e ( P E ) H^{e-f}_e ( \ell )\subseteq \mathrm {Hilb}^e ( \mathbb {P}E ) and Q e e f ( V ) Q u o t 0 , e ( E ) Q^{e-f}_e(V)\subseteq \mathrm {Quot}^{0, e} ( E^* ) which generalise V e e f ( ) V^{e-f}_e( \ell ) , giving several examples. We describe the Zariski tangent spaces of Q e e f ( V ) Q^{e-f}_e(V) , and give examples showing that smoothness of Q e e f ( V ) Q^{e-f}_e(V) is not necessarily controlled by injectiveness of a Petri map. We generalise the Abel–Jacobi map and the notion of linear series to the context of Quot schemes.

We give some sufficient conditions for nonemptiness of generalised secant loci, and a criterion in the complete case when f = 1 f = 1 in terms of the Segre invariant s 1 ( E ) s_1 (E) . This leads to a geometric characterisation of semistability similar to that in [Quot schemes, Segre invariants, and inflectional loci of scrolls over curves, Geom. Dedicata 205 (2020), 1–19]. Using these ideas, we also give a partial answer to a question of Lange on very ampleness of O P E ( 1 ) \mathcal {O}_{\mathbb {P}E}(1) , and show that for any curve, Q e e 1 ( V ) Q^{e-1}_e(V) is either empty or of the expected dimension for sufficiently general E E and V V . When Q e e 1 ( V ) Q^{e-1}_e(V) has and attains expected dimension zero, we use formulas of Oprea–Pandharipande and Stark to enumerate Q e e 1 ( V ) Q^{e-1}_e(V) .

We mention several possible avenues of further investigation.

Publisher

American Mathematical Society

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3