Coherent Systems and Brill–Noether Theory

Author:

Bradlow S. B.1,García-Prada O.2,Muñoz V.3,Newstead P. E.4

Affiliation:

1. Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

2. Instituto de Matemáticas y Fízica Fundamental, Consejo Superior de Investigaciones Científicas, Serrano, 113 bis, 28006 Madrid, Spain

3. Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

4. Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, UK

Abstract

Let X be a curve of genus g. A coherent system on X consists of a pair (E,V), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k=1,2,3 and n=2 explicitly. For small values of α, the moduli spaces of coherent systems are related to the Brill–Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to find the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill–Noether loci with k≤3.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ranks of maps of vector bundles;Revista Matemática Complutense;2023-07-10

2. Higher-rank Brill-Noether loci on nodal reducible curves;Geometriae Dedicata;2023-01-28

3. Some remarks on the geometry of the tautological model;Collectanea Mathematica;2022-10-05

4. Coherent systems and BGN extensions on nodal reducible curves;International Journal of Mathematics;2022-02-21

5. A general notion of coherent systems;Revista Matemática Iberoamericana;2022-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3