Abstract
Abstract
We apply a notion of quantum complexity, called “Krylov complexity”, to study the evolution of systems from integrability to chaos. For this purpose we investigate the integrable XXZ spin chain, enriched with an integrability breaking deformation that allows one to interpolate between integrable and chaotic behavior. K-complexity can act as a probe of the integrable or chaotic nature of the underlying system via its late-time saturation value that is suppressed in the integrable phase and increases as the system is driven to the chaotic phase. We furthermore ascribe the (under-)saturation of the late-time bound to the amount of disorder present in the Lanczos sequence, by mapping the complexity evolution to an auxiliary off-diagonal Anderson hopping model. We compare the late-time saturation of K-complexity in the chaotic phase with that of random matrix ensembles and find that the chaotic system indeed approaches the RMT behavior in the appropriate symmetry class. We investigate the dependence of the results on the two key ingredients of K-complexity: the dynamics of the Hamiltonian and the character of the operator whose time dependence is followed.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference50 articles.
1. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambrige, U.K. (2012).
2. L. Susskind, Three Lectures on Complexity and Black Holes, Springer, Cham, Switzerland (2018) [arXiv:1810.11563] [INSPIRE].
3. D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A universal operator growth hypothesis, Phys. Rev. X 9 (2019) 041017 [arXiv:1812.08657] [INSPIRE].
4. J.L.F. Barbón, E. Rabinovici, R. Shir and R. Sinha, On the evolution of operator complexity beyond scrambling, JHEP 10 (2019) 264 [arXiv:1907.05393] [INSPIRE].
5. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, Operator complexity: a journey to the edge of Krylov space, JHEP 06 (2021) 062 [arXiv:2009.01862] [INSPIRE].
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献