On the evolution of operator complexity beyond scrambling

Author:

Barbón J.L.F.,Rabinovici E.,Shir R.,Sinha R.

Abstract

Abstract We study operator complexity on various time scales with emphasis on those much larger than the scrambling period. We use, for systems with a large but finite number of degrees of freedom, the notion of K-complexity employed in [1] for infinite systems. We present evidence that K-complexity of ETH operators has indeed the character associated with the bulk time evolution of extremal volumes and actions. Namely, after a period of exponential growth during the scrambling period the K-complexity increases only linearly with time for exponentially long times in terms of the entropy, and it eventually saturates at a constant value also exponential in terms of the entropy. This constant value depends on the Hamiltonian and the operator but not on any extrinsic tolerance parameter. Thus K-complexity deserves to be an entry in the AdS/CFT dictionary. Invoking a concept of K-entropy and some numerical examples we also discuss the extent to which the long period of linear complexity growth entails an efficient randomization of operators.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference28 articles.

1. D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, arXiv:1812.08657 [INSPIRE].

2. A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev.D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].

3. L. Susskind, Three Lectures on Complexity and Black Holes, 2018, arXiv:1810.11563 [INSPIRE].

4. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

5. M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spread complexity evolution in quenched interacting quantum systems;Physical Review B;2024-01-19

2. Operator dynamics in Lindbladian SYK: a Krylov complexity perspective;Journal of High Energy Physics;2024-01-17

3. Quantum state complexity meets many-body scars;Journal of Physics: Condensed Matter;2024-01-11

4. Operator growth and Krylov complexity in Bose-Hubbard model;Journal of High Energy Physics;2023-12-18

5. On Krylov complexity in open systems: an approach via bi-Lanczos algorithm;Journal of High Energy Physics;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3