Abstract
Abstract
Heisenberg time evolution under a chaotic many-body Hamiltonian H transforms an initially simple operator into an increasingly complex one, as it spreads over Hilbert space. Krylov complexity, or ‘K-complexity’, quantifies this growth with respect to a special basis, generated by H by successive nested commutators with the operator. In this work we study the evolution of K-complexity in finite-entropy systems for time scales greater than the scrambling time ts> log(S). We prove rigorous bounds on K-complexity as well as the associated Lanczos sequence and, using refined parallelized algorithms, we undertake a detailed numerical study of these quantities in the SYK4 model, which is maximally chaotic, and compare the results with the SYK2 model, which is integrable. While the former saturates the bound, the latter stays exponentially below it. We discuss to what extent this is a generic feature distinguishing between chaotic vs. integrable systems.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献