Photon masses in the landscape and the swampland

Author:

Reece MatthewORCID

Abstract

Abstract In effective quantum field theory, a spin-1 vector boson can have a technically natural small mass that does not originate from the Higgs mechanism. For such theories, which may be written in Stückelberg form, there is no point in field space at which the mass is exactly zero. I argue that quantum gravity differs from, and constrains, effective field theory: arbitrarily small Stückelberg masses are forbidden. In particular, the limit in which the mass goes to zero lies at infinite distance in field space, and this distance is correlated with a tower of modes becoming light according to the Swampland Distance Conjecture. Application of Tower or Sublattice variants of the Weak Gravity Conjecture makes this statement more precise: for a spin-1 vector boson with coupling constant e and Stückelberg mass m, local quantum field theory breaks down at energies at or below ΛUV = min((mM Pl/e)1/2, e 1/3 M Pl). Combined with phenomenological constraints, this argument implies that the Standard Model photon must be exactly massless. It also implies that much of the parameter space for light dark photons, which are the target of many experimental searches, is compatible only with Higgs and not Stückelberg mass terms. This significantly affects the experimental limits and cosmological histories of such theories. I explain various caveats and weak points of the arguments, including loopholes that could be targets for model-building.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference90 articles.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3