Cosmological dynamics of string theory axion strings

Author:

Benabou Joshua N.12ORCID,Bonnefoy Quentin12ORCID,Buschmann Malte34ORCID,Kumar Soubhik512ORCID,Safdi Benjamin R.12ORCID

Affiliation:

1. University of California

2. Lawrence Berkeley National Laboratory

3. Princeton University

4. University of Amsterdam

5. New York University

Abstract

The quantum chromodynamics (QCD) axion may solve the strong CP problem and explain the dark matter (DM) abundance of our Universe. The axion was originally proposed to arise as the pseudo-Nambu-Goldstone boson of global U(1)PQ Peccei-Quinn (PQ) symmetry breaking, but axions also arise generically in string theory as zero modes of higher-dimensional gauge fields. In this work we show that string theory axions behave fundamentally differently from field theory axions in the early Universe. Field theory axions may form axion strings if the PQ phase transition takes place after inflation. In contrast, we show that string theory axions do not generically form axion strings. In special inflationary paradigms, such as D-brane inflation, string theory axion strings may form; however, their tension is parametrically larger than that of field theory axion strings. We then show that such QCD axion strings overproduce the DM abundance for all allowed QCD axion masses and are thus ruled out, except in scenarios with large warping. A loop-hole to this conclusion arises in the axiverse, where an axion string could be composed of multiple different axion mass eigenstates; a heavier eigenstate could collapse the network earlier, allowing for the QCD axion to produce the correct DM abundance and also generating observable gravitational wave signals. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

European Research Council

Horizon 2020 Framework Programme

National Science Foundation

Simons Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3