Challenges for district heating in Poland

Author:

Talarek Karolina,Knitter-Piątkowska Anna,Garbowski Tomasz

Abstract

AbstractCurrently, the district heating (DH) in Poland is facing many challenges. The business model used hitherto was very simple—in most cities, heating plants produced heat, and centralized heating systems supplied the "product" at a price approved annually by the president of the Energy Regulatory Office (URE). However, recent years have brought significant changes on the market. EU regulations force the elimination of old coal-fired plants that were still built in the Polish People's Republic (PRL), moreover, high prices of CO2 emission allowances aggravate the financial situation of companies. In addition, in the heating sector, the trend observed in the power sector is becoming increasingly visible—limiting the role of large sources in favor of energy generated locally, closer to the customer. One of the biggest challenges is achieving the targets set by the EU for the share of renewable energy sources (RES) in the heating sector. The present conflicts and problems with the supply of coal and gas are an additional impulse to turn to RES. Thus, the development of sustainable and innovative solutions for energy production and supply at the level of urban networks is currently one of the main technical challenges. The purpose of the paper is to present the current situation and perspectives of development of district heating systems in Poland with a view to the status of district heating in the world, and some deeper insight into European conditions. The review presents energy sources with particular emphasis on renewable energy sources (RES) and their cogeneration for heat production. The examples of existing heating network solutions using renewable energy sources, based on the selected published case studies, are also discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference119 articles.

1. United Nations. Day of eight billlion. Available online: https://www.un.org/development/desa/pd/events/day-eight-billionUnitedNations. Accessed 20 Nov 2022.

2. Report: Pathways to a Clean Energy System; Energy Technology Perspectives, I.E. Agency, 2012.

3. Mertens, R.; Manual for Statistics on Energy Consumption in Households. Publications Office of the European Union, Luxembourg, 2013. Available on: http://ec.europa.eu/eurostat/documents/3859598/5935825/KS-GQ-13-003-EN.PDF/baa96509-3f4b-4c7a-94dd-feb1a31c7291. Accessed 20 Nov 2022.

4. Mirzaei PA. Recent challenges in modeling of urban heat island. Sustain Cities Soc. 2015;19:200–6.

5. Mirzaei PA, Olsthoorn D, Torja M, Haghighat F. Urban neighborhood characteristics influence on a building indoor environment. Sustain Cities Soc. 2015;19:403–13.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3