Development of Hybrid District Heating Systems

Author:

Sednin A. V.1,Dyussenov K. M.2

Affiliation:

1. Belarusian National Technical University

2. Eurasian National University named after. L.N. Gumileva

Abstract

The article discusses the current problems of transformation of existing district heating systems for the CIS countries within the framework of the development of trends in the integration of energy sectors, increasing the consumption of renewable energy resources, “decarbonizing” industry and digitalization of the economy. The experience of Western European countries in terms of the transition to “4th and 5th generation” district heating systems is considered. The technical aspects of the creation of hybrid control systems are analyzed, generalized structural technological schemes of hybrid district heating systems and the main measures, the implementation of which is necessary during their transition to the state of a new generation of district heating systems, are introduced. It is noted that the hybridity of the district heating system implies the presence of regenerative properties in terms of the production of energy carriers for use in adjacent systems, in particular hydrogen. In turn, the flexibility of the district heating system is largely realized via the development of accumulative properties, which leads to the invariance of the use of available energy storage technologies. It is argued that, despite the constantly decreasing costs of creating and operating an electric power storage system, thermal energy storage systems remain a priority in heat supply, especially when using renewable energy sources. The issue of using electricity in district heating systems as an excess resource of integrated energy systems within the framework of equalizing the daily and seasonal schedule of energy consumption is also considered. Also, a diagram is presented reflecting the technical solutions in terms of the equipment used to implement the “electricity – heat” technology. The problem of management of heat supply systems of a new generation is discussed. It is indicated that in order to ensure the required maneuverable properties of heat supply systems, it is necessary to develop and apply new methods of planning and managing heat supply systems, excluding a single-purpose approach in the organization of hybrid systems, which manifests a synergistic effect with new possibilities for finding optimal solutions aimed at reducing fuel consumption. The need to create an intersystem information space, which would include the creation of intelligent process control systems based on the analysis of large amounts of data, is demonstrated. It is noted that the main goal of operational management of hybrid thermal networks is to achieve a dynamic balance between the required value of the thermal load of consumers, the production of thermal energy and the volume of accumulation. The use of hybrid systems in heat supply makes it possible to solve the multifunctional task of increasing the reliability of energy supply and the stability of the functioning of the energy system, which is primarily achieved by solving the problem of balancing production and energy consumption capacities from the point of alignment of generation and energy consumption schedules. A separate consideration of the prospects for the use of hybrid district heating systems in the conditions of the Republic of Belarus is highlighted. The need for additional research to adapt known and develop new technical solutions within the framework of the transition of district heating systems to a new quality is shown.

Publisher

Belarusian National Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3