Affiliation:
1. Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia
2. Department of Automated Electric Power Systems, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
Abstract
The need to modernize existing district heating systems is due to increased requirements for their flexibility, energy efficiency, and environmental friendliness. The technical policy on district heating pursued in different countries centers on the listed goals and takes account of historical, climatic, and regional features of the resource, technology, and economic availability of various thermal energy sources. This study aims to analyze methods designed to improve the flexibility, energy efficiency, and environmental friendliness of district heating systems. The focus of the study is district heating system, which provides heating and hot water supply to consumers and consists of various types of thermal energy sources. The work shows the possibility for the heating system to transition from the third generation to the fourth one, which differ in their level of intellectualization. The establishment of an intelligent control system will ensure the interaction of various heat sources, but this is a separate strand of research. In this study, a model and a methodology were developed to optimize the structure of thermal energy sources and their operating conditions when covering the heat load curve of a territory with a predominance of household consumers. Gas-reciprocating and gas-turbine cogeneration plants are considered as the main thermal energy sources, whose efficiency is boosted through their joint operation with electric boilers, thermal energy storage systems, low-grade heat sources, and absorption chillers. The primary emphasis of the study is on the assessment of the environmental benefit to be gained by using cogeneration plants as a factor of enhancing the investment appeal of the district heating systems. The findings suggest that the transition of district heating systems to the next generation is impossible without changing the institutional environment, strengthening the role of active consumers, and introducing intelligent control for district heating systems.
Funder
Russian Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Innovative Technologies for Utility Power System;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20