Does liming improve microbial carbon use efficiency after maize litter addition in a tropical acidic soil?

Author:

Moran-Rodas Virna EstefaniaORCID,Joergensen Rainer Georg,Wachendorf Christine

Abstract

AbstractSoil pH is one of the main drivers of soil microbial functions, including carbon use efficiency (CUE), the efficiency of microorganisms in converting substrate C into biomass, a key parameter for C sequestration. We evaluated liming effects after maize-litter addition on total CUE (including microbial residues), CUE of microbial biomass (CUEMB), and fungal biomass on an acidic Acrisol with a low C. We established a 6-week incubation experiment to compare limed and unlimed Acrisol treatments and a reference soil, a neighboring Nitisol with optimal pH. Fungal biomass (ergosterol) increased ~ 10 times after litter addition compared with soils without litter, and the final amount was greater in the limed Acrisol than the Nitisol. Litter addition induced a positive priming effect that increased with increasing pH. The increases in soil pH also led to increases in litter-derived CO2C and decreases in particulate organic matter (POM)C. Thus, in spite of increasing microbial biomass C, CUE decreased with increasing pH and CUEMB was similar across the three soils. CUEMB was positively associated with saprotrophic fungi, implying that fungi are more efficient in incorporating litter-derived C into microbial, especially fungal biomass after 42 days. By including undecomposed maize litter and microbial residues, CUE provided a more comprehensive interpretation of pH and liming effects than CUEMB. Nevertheless, longer-term studies may provide further information on substrate-C turnover and the persistence of liming and pH effects.

Funder

Graduate Program BangaDyn, University of Kassel

Deutscher Akademischer Austauschdienst

Universität Kassel

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3