Microbial Mechanisms of the Priming Effect over 12 Years of Different Amounts of Nitrogen Management

Author:

Yang Kepan123,Peng Peng123,Duan Fuyuan123,Tang Hu123,Wu Kaixuan123,Wu Zhenying123,Li Fan123,Chen Yong123,Zou Chaoqun4,Liu Lei5,Wang Jianwu123ORCID

Affiliation:

1. College of Agriculture, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou 510642, China

3. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

4. Guangzhou Fruit Science Research Institute, Guangzhou 510405, China

5. College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China

Abstract

The return of crop residues and application of chemical nitrogen (N) can influence the soil organic carbon (SOC) turnover. However, the changes in the response of the priming effect (PE) to N management in real farming systems are not fully understood. In this research, we launched a 270-day in situ experiment in three N management plots (N0, no N; N1, 300 kg hm−2; and N2, 360 kg hm−2) on a long-term maize farm in order to examine the microbial mechanisms that trigger the PE in the presence of 13C-labeled maize residues. We found that N1 decreased SOC mineralization and the positive PE, but increased the residual C mineralization and microbial C use efficiency in comparison with N0 and N2, respectively. The positive PE can be explained by the microbial nutrient mining theory for N0 and by the microbial stoichiometry decomposition theory for N1 and N2, as reflected by the increased abundance of oligotrophic phyla in N0 and the increased abundance of copiotrophic phyla in N1 and N2. The microbial biomass C (MBC), residue-derived MBC, and the communities’ complexity were decreased in N2 due to the acidification of the soil environment, but N1 enhanced the MBC, residue-derived MBC, and bacterial communities’ complexity. The keystone bacterial taxa of Vicinamibacteraceae and Gemmatimonas preferred the recalcitrant C of SOC in N0 and N2, respectively. However, Acidibacter favored the labile residual C in N1. The keystone fungal taxa of Penicillium, Sarocladium, and Cladophialophora exhibited wide substrate-use abilities in N0, N1, and N2, respectively. Our research depicts the mechanisms of how microbial communities’ structures are reshaped through N management and emphasizes the functions of the keystone microbial taxa in C turnover and the PE in farming systems.

Funder

Science and Technology Planning Project of Guangzhou city, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3