Abstract
AbstractThis work presents the performance evaluation of Graphene/ZnO Schottky junctions grown on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. The fabricated structures include chemical vapour deposition grown graphene layer on ITO-coated PET substrates. Polymethyl methacrylate assisted transfer method has been employed for the successful transfer of graphene from Cu substrate to PET. The smaller D-band intensity (1350 cm−1) compared to G-band (1580 cm−1) indicates good quality of carbon lattice with less number of defects. High-quality ZnO has been deposited through RF sputtering. The deposited ZnO with grain size 50–95 nm exhibited dislocation densities of 1.31270 × 10–3 nm−2 and compressive nature with negative strain of − 1.43156 GPa. Further, the electrical and optical characterization of the devices has been done through device I–V characterization and UV detection analysis. The UV detection capability of the device has been carried out with the aid of a UV-lamp of 365 nm wavelength. The fabricated graphene/ZnO photodetector showed good response to UV illumination. The device performance analysis has been done through a comparison of the device responsivity and detectivity with the existing detectors. The detectivity and responsivity of the fabricated detectors were 7.106 × 109 mHz1/2 W−1 and 0.49 A W−1, respectively.
Funder
Ministry of Human Resource Development
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献