Abstract
AbstractIn this study, the fabricated Al/p-Si Schottky diode is characterised at room temperature using current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the I–V measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.
Funder
National Research Foundation
The World Academy of Sciences
University of South Africa
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献