Special issue on machine learning and data-driven methods in fluid dynamics
Author:
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,Computational Mechanics
Link
https://link.springer.com/content/pdf/10.1007/s00162-020-00542-y.pdf
Reference28 articles.
1. https://www.ncdc.noaa.gov/data-access
2. Balachandar, S., Moore, W.C., Akiki, G., Liu, K.: Towards particle-resolved accuracy in Euler-Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theor. Comput. Fluid Dyn. 34(3) (2020). https://doi.org/10.1007/s00162-020-00538-8
3. Bhattacharjee, D., Klose, B., Jacobs, G.B., Hemati, M.S.: Data-driven selection of actuators for optimal control of airfoil separation. Theor. Comput. Fluid Dyn. 34(3) (2020). https://doi.org/10.1007/s00162-020-00526-y
4. Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive flow control with limited sensor data and online learning. Theor. Comput. Fluid Dyn. 34(3) (2020). https://doi.org/10.1007/s00162-020-00520-4
5. Brenner, M., Eldredge, J., Freund, J.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4(10), 100501 (2019)
Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Flow control by a hybrid use of machine learning and control theory;International Journal of Numerical Methods for Heat & Fluid Flow;2024-08-14
2. Data-driven transient lift attenuation for extreme vortex gust–airfoil interactions;Journal of Fluid Mechanics;2024-08-10
3. Adaptive activation functions for predictive modeling with sparse experimental data;Neural Computing and Applications;2024-07-24
4. Predicting transient wind loads on tall buildings in three-dimensional spatial coordinates using machine learning;Journal of Building Engineering;2024-05
5. Using statistical and machine learning approaches to describe estuarine tidal dynamics;Journal of Hydroinformatics;2024-03-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3