Author:
Bieker Katharina,Peitz Sebastian,Brunton Steven L.,Kutz J. Nathan,Dellnitz Michael
Abstract
AbstractThe control of complex systems is of critical importance in many branches of science, engineering, and industry, many of which are governed by nonlinear partial differential equations. Controlling an unsteady fluid flow is particularly important, as flow control is a key enabler for technologies in energy (e.g., wind, tidal, and combustion), transportation (e.g., planes, trains, and automobiles), security (e.g., tracking airborne contamination), and health (e.g., artificial hearts and artificial respiration). However, the high-dimensional, nonlinear, and multi-scale dynamics make real-time feedback control infeasible. Fortunately, these high-dimensional systems exhibit dominant, low-dimensional patterns of activity that can be exploited for effective control in the sense that knowledge of the entire state of a system is not required. Advances in machine learning have the potential to revolutionize flow control given its ability to extract principled, low-rank feature spaces characterizing such complex systems. We present a novel deep learning model predictive control framework that exploits low-rank features of the flow in order to achieve considerable improvements to control performance. Instead of predicting the entire fluid state, we use a recurrent neural network (RNN) to accurately predict the control relevant quantities of the system, which are then embedded into an MPC framework to construct a feedback loop. In order to lower the data requirements and to improve the prediction accuracy and thus the control performance, incoming sensor data are used to update the RNN online. The results are validated using varying fluid flow examples of increasing complexity.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,Computational Mechanics
Reference46 articles.
1. Ahmad, M.I., Benner, P., Goyal, P., Heiland, J.: Moment-matching based model reduction for Navier–Stokes type quadratic-bilinear descriptor systems. ZAMM J. Appl. Math. Mech. 97(10), 1252–1267 (2017)
2. Abadi et al., M.: Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)
3. Baumeister, T., Brunton, S.L., Kutz, J.N.: Deep learning and model predictive control for self-tuning mode-locked lasers. J. Opt. Soc. Am. B 35(3), 617–626 (2018)
4. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)
5. Benner, P., Heiland, J.: Lqg-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014, pp. 365–379. Springer International Publishing, Cham (2015)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献