Using statistical and machine learning approaches to describe estuarine tidal dynamics

Author:

Lauer Franziska1ORCID,Kösters Frank1ORCID

Affiliation:

1. 1 Federal Waterways Engineering and Research Institute, Wedeler Landstraße 157, 22559 Hamburg, Germany

Abstract

ABSTRACT Estuaries are ecologically valuable regions where tidal forces move large volumes of water. To understand the ongoing physical processes in such dynamic systems, a series of estuarine monitoring stations is required. Based on the measurements, estuarine dynamics can be described by key values, so-called tidal characteristics. The reconstruction and prediction of tidal characteristics by suitable approaches is essential to discover natural or anthropogenic changes. Therefore, it is of interest to inter- and extrapolate measured values in time and to investigate the spatial relationship between different stations. Normally, such system analyses are performed by deterministic numerical models. However, to facilitate long-term investigations also, statistical and machine learning approaches are good options. For a Weser estuary case study, we implemented three approaches (linear, non-linear, and artificial neural network regression) with the same database to enable the prediction of tidal extrema. Thereby we achieve an accuracy of 0.4–2.5% derivation (based on the RMSEs) while approximating measured values over 19 years. This proves that the approaches can be used for hindcast studies as well as for future analysis of system changes. Our work can be understood as a proof of concept for the practical potential of neural networks in estuarine system analysis.

Publisher

IWA Publishing

Reference48 articles.

1. AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods

2. B-AMA: A Python-coded protocol to enhance the application of data-driven models in hydrology

3. Time series methods for water level forecasting of Dungun river in Terengganu, Malaysia;Arbian;International Journal of Engineering Science and Technology,2012

4. MLR and ANN models of significant wave height on the west coast of India

5. Modelling and prediction of water level for a coastal zone using artificial neural networks;Badejo;International Journal of Computational Engineering Research,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3