Author:
Zhong Yonghong,Fukami Kai,An Byungjin,Taira Kunihiko
Abstract
Abstract
Reconstruction of unsteady vortical flow fields from limited sensor measurements is challenging. We develop machine learning methods to reconstruct flow features from sparse sensor measurements during transient vortex–airfoil wake interaction using only a limited amount of training data. The present machine learning models accurately reconstruct the aerodynamic force coefficients, pressure distributions over airfoil surface, and two-dimensional vorticity field for a variety of untrained cases. Multi-layer perceptron is used for estimating aerodynamic forces and pressure profiles over the surface, establishing a nonlinear model between the pressure sensor measurements and the output variables. A combination of multi-layer perceptron with convolutional neural network is utilized to reconstruct the vortical wake. Furthermore, the use of transfer learning and long short-term memory algorithm combined in the training models greatly improves the reconstruction of transient wakes by embedding the dynamics. The present machine-learning methods are able to estimate the transient flow features while exhibiting robustness against noisy sensor measurements. Finally, appropriate sensor locations over different time periods are assessed for accurately estimating the wakes. The present study offers insights into the dynamics of vortex–airfoil interaction and the development of data-driven flow estimation.
Graphic abstract
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,Computational Mechanics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献