Base-Reconfigurable Segmented Logarithmic Quantization and Hardware Design for Deep Neural Networks

Author:

Xu Jiawei,Huan Yuxiang,Jin Yi,Chu Haoming,Zheng Li-Rong,Zou ZhuoORCID

Funder

NSFC

Shanghai Municipal Science and Technology Major Project

ZJ Lab

Shanghai Platform for Neuromorphic and AI Chip

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modelling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Reference27 articles.

1. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).

2. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

3. Han, S., Mao, H., & Dally, W.J. (2015). Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. arXiv: abs/1510.00149 .

4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks:, Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv: 1602.02830 .

5. Lee, E.H., Miyashita, D., Chai, E., Murmann, B., & Wong, S.S. (2017). LogNet: Energy-efficient neural networks using logarithmic computation. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5900–5904).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AQA: An Adaptive Post-Training Quantization Method for Activations of CNNs;IEEE Transactions on Computers;2024-08

2. A hardware-friendly logarithmic quantization method for CNNs and FPGA implementation;Journal of Real-Time Image Processing;2024-06-06

3. Bit-Weight Adjustment for Bridging Uniform and Non-Uniform Quantization to Build Efficient Image Classifiers;Electronics;2023-12-18

4. ASLog: An Area-Efficient CNN Accelerator for Per-Channel Logarithmic Post-Training Quantization;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-12

5. LNS for DNN Architectures;Synthesis Lectures on Engineering, Science, and Technology;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3