Abstract
AbstractIn the first part of the present paper, we show that strong convergence of $$(v_{0 \varepsilon })_{\varepsilon \in (0, 1)}$$
(
v
0
ε
)
ε
∈
(
0
,
1
)
in $$L^1(\Omega )$$
L
1
(
Ω
)
and weak convergence of $$(f_{\varepsilon })_{\varepsilon \in (0, 1)}$$
(
f
ε
)
ε
∈
(
0
,
1
)
in $$L_{\text {loc}}^1({{\overline{\Omega }}} \times [0, \infty ))$$
L
loc
1
(
Ω
¯
×
[
0
,
∞
)
)
not only suffice to conclude that solutions to the initial boundary value problem $$\begin{aligned} {\left\{ \begin{array}{ll} v_{\varepsilon t} = \Delta v_\varepsilon + f_\varepsilon (x, t) &{} \text {in }\Omega \times (0, \infty ), \\ \partial _\nu v_\varepsilon = 0 &{} \text {on }\partial \Omega \times (0, \infty ), \\ v_\varepsilon (\cdot , 0) = v_{0 \varepsilon } &{} \text {in }\Omega , \end{array}\right. } \end{aligned}$$
v
ε
t
=
Δ
v
ε
+
f
ε
(
x
,
t
)
in
Ω
×
(
0
,
∞
)
,
∂
ν
v
ε
=
0
on
∂
Ω
×
(
0
,
∞
)
,
v
ε
(
·
,
0
)
=
v
0
ε
in
Ω
,
which we consider in smooth, bounded domains $$\Omega $$
Ω
, converge to the unique weak solution of the limit problem, but that also certain weighted gradients of $$v_\varepsilon $$
v
ε
converge strongly in $$L_{\text {loc}}^2({{\overline{\Omega }}} \times [0, \infty ))$$
L
loc
2
(
Ω
¯
×
[
0
,
∞
)
)
along a subsequence. We then make use of these findings to obtain global generalized solutions to various cross-diffusive systems. Inter alia, we establish global generalized solvability of the system $$\begin{aligned} {\left\{ \begin{array}{ll} u_t = \Delta u - \chi \nabla \cdot (\frac{u}{v} \nabla v) + g(u), \\ v_t = \Delta v - uv, \end{array}\right. } \end{aligned}$$
u
t
=
Δ
u
-
χ
∇
·
(
u
v
∇
v
)
+
g
(
u
)
,
v
t
=
Δ
v
-
u
v
,
where $$\chi > 0$$
χ
>
0
and $$g \in C^1([0, \infty ))$$
g
∈
C
1
(
[
0
,
∞
)
)
are given, merely provided that ($$g(0) \ge 0$$
g
(
0
)
≥
0
and) $$-g$$
-
g
grows superlinearly. This result holds in all space dimensions and does neither require any symmetry assumptions nor the smallness of certain parameters. Thereby, we expand on a corresponding result for quadratically growing $$-g$$
-
g
proved by Lankeit and Lankeit (Nonlinearity 32(5):1569–1596, 2019).
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献