Strong convergence of weighted gradients in parabolic equations and applications to global generalized solvability of cross-diffusive systems

Author:

Fuest MarioORCID

Abstract

AbstractIn the first part of the present paper, we show that strong convergence of $$(v_{0 \varepsilon })_{\varepsilon \in (0, 1)}$$ ( v 0 ε ) ε ( 0 , 1 ) in $$L^1(\Omega )$$ L 1 ( Ω ) and weak convergence of $$(f_{\varepsilon })_{\varepsilon \in (0, 1)}$$ ( f ε ) ε ( 0 , 1 ) in $$L_{\text {loc}}^1({{\overline{\Omega }}} \times [0, \infty ))$$ L loc 1 ( Ω ¯ × [ 0 , ) ) not only suffice to conclude that solutions to the initial boundary value problem $$\begin{aligned} {\left\{ \begin{array}{ll} v_{\varepsilon t} = \Delta v_\varepsilon + f_\varepsilon (x, t) &{} \text {in }\Omega \times (0, \infty ), \\ \partial _\nu v_\varepsilon = 0 &{} \text {on }\partial \Omega \times (0, \infty ), \\ v_\varepsilon (\cdot , 0) = v_{0 \varepsilon } &{} \text {in }\Omega , \end{array}\right. } \end{aligned}$$ v ε t = Δ v ε + f ε ( x , t ) in Ω × ( 0 , ) , ν v ε = 0 on Ω × ( 0 , ) , v ε ( · , 0 ) = v 0 ε in Ω , which we consider in smooth, bounded domains $$\Omega $$ Ω , converge to the unique weak solution of the limit problem, but that also certain weighted gradients of $$v_\varepsilon $$ v ε converge strongly in $$L_{\text {loc}}^2({{\overline{\Omega }}} \times [0, \infty ))$$ L loc 2 ( Ω ¯ × [ 0 , ) ) along a subsequence. We then make use of these findings to obtain global generalized solutions to various cross-diffusive systems. Inter alia, we establish global generalized solvability of the system $$\begin{aligned} {\left\{ \begin{array}{ll} u_t = \Delta u - \chi \nabla \cdot (\frac{u}{v} \nabla v) + g(u), \\ v_t = \Delta v - uv, \end{array}\right. } \end{aligned}$$ u t = Δ u - χ · ( u v v ) + g ( u ) , v t = Δ v - u v , where $$\chi > 0$$ χ > 0 and $$g \in C^1([0, \infty ))$$ g C 1 ( [ 0 , ) ) are given, merely provided that ($$g(0) \ge 0$$ g ( 0 ) 0 and) $$-g$$ - g grows superlinearly. This result holds in all space dimensions and does neither require any symmetry assumptions nor the smallness of certain parameters. Thereby, we expand on a corresponding result for quadratically growing $$-g$$ - g proved by Lankeit and Lankeit (Nonlinearity 32(5):1569–1596, 2019).

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Mathematics (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3