Classical and generalized solutions of an alarm-taxis model

Author:

Fuest MarioORCID,Lankeit JohannesORCID

Abstract

AbstractIn bounded, spatially two-dimensional domains, the system "Equation missing"complemented with initial and homogeneous Neumann boundary conditions, models the interaction between prey (with density u), predator (with density v) and superpredator (with density w), which preys on both other populations. Apart from random motion and prey-tactical behavior of the primary predator, the key aspect of this system is that the secondary predator reacts to alarm calls of the prey, issued by the latter whenever attacked by the primary predator. We first show in the pure alarm-taxis model, i.e. if $$\xi = 0$$ ξ = 0 , that global classical solutions exist. For the full model (with $$\xi > 0$$ ξ > 0 ), the taxis terms and the presence of the term $$-a_2 uw$$ - a 2 u w in the first equation apparently hinder certain bootstrap procedures, meaning that the available regularity information is rather limited. Nonetheless, we are able to obtain global generalized solutions. An important technical challenge is to guarantee strong convergence of (weighted) gradients of the first two solution components in order to conclude that approximate solutions converge to a generalized solution of the limit problem.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3