1. Agustsson E, Mentzer F, Tschannen M, Cavigelli L, Timofte R, Benini L, Gool LV (2017) Soft-to-hard vector quantization for end-to-end learning compressible representations. In: Advances in Neural Information Processing Systems, pp 1141–1151
2. Agustsson E, Tschannen M, Mentzer F, timofte R, Gool LV (2019) Generative adversarial networks for extreme learned image compression. arXiv:1804.02958v3
3. Baccaglini, Tillo T, Olmo G (2007) A flexible r-d-based multiple description scheme for jpeg 2000. IEEE Signal Process Lett 14(3):197–200
4. Ballé J, Laparra V, Simoncelli EP (2017) End-to-end optimized image compression. arXiv:1611.01704v3
5. Feng J, Wen T, Liu S, Jie R, Xun G, Zhao D (2017) An end-to-end compression framework based on convolutional neural networks IEEE Transactions on Circuits & Systems for Video Technology, PP(99) 1–1