1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA, Jun. 7–12, pp. 3440–3461 (2015)
2. Chen, L-C, Papandreou, G, Kokkions, L, Murphy, K, Yuille, AL.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: On Computer Vision and Pattern Recognition (CVPR), arXiv:1412.7062v3, (2015).4.9
3. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
4. Chen, L-C, Papandreou, G, Schroff, F, Adam, H: Rethinking Atrous Convolution for Semantic Image Segmentation. In: On Computer Vision and Pattern Recognition (CVPR), arXiv:1706.05587v3, (2017).12.5
5. Chen L-C, YuKun Z, George P, Florian S, Hartwig A.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: On Computer Vision and Pattern Recognition (CVPR), arXiv:1802.02611v3, (2018).8.22