Video Error-Resilience Encoding and Decoding Based on Wyner-Ziv Framework for Underwater Transmission

Author:

Li Borui1ORCID,Zhang Yang1ORCID,Feng Qingjuan1

Affiliation:

1. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

Limited by the characteristics of underwater acoustic channels, the video transmission applications targeting deep-sea detection and operation tasks are facing severe challenges such as network failure and high delay, resulting in loss of video details, color distortion, blurring, and even bit errors, which seriously affect decoding quality of the video transmission and reception. In order to solve the problems of deep-sea long-distance wireless communication, this paper proposes an improved Wyner-Ziv coding scheme (UnderWater-WZ) for video transmission through acoustic channels. The implementation process includes controlling error range by using MJPEG coding, combining motion compensation time interpolation with calibration information to generate high-quality side information. And intraframe quantization matrix is designed to weaken the change of video scene. The experimental results show that under the highest packet loss rate of 20%, this scheme can achieve 2.6~3.5 dB improvements in terms of video reconstruction compared to the previous methods, which is close to the error-free level.

Funder

Beijing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3