Reversible denoising and lifting based color component transformation for lossless image compression

Author:

Starosolski RomanORCID

Abstract

Abstract An undesirable side effect of reversible color space transformation, which consists of lifting steps (LSs), is that while removing correlation it contaminates transformed components with noise from other components. Noise affects particularly adversely the compression ratios of lossless compression algorithms. To remove correlation without increasing noise, a reversible denoising and lifting step (RDLS) was proposed that integrates denoising filters into LS. Applying RDLS to color space transformation results in a new image component transformation that is perfectly reversible despite involving the inherently irreversible denoising; the first application of such a transformation is presented in this paper. For the JPEG-LS, JPEG 2000, and JPEG XR standard algorithms in lossless mode, the application of RDLS to the RDgDb color space transformation with simple denoising filters is especially effective for images in the native optical resolution of acquisition devices. It results in improving compression ratios of all those images in cases when unmodified color space transformation either improves or worsens ratios compared with the untransformed image. The average improvement is 5.0–6.0% for two out of the three sets of such images, whereas average ratios of images from standard test-sets are improved by up to 2.2%. For the efficient image-adaptive determination of filters for RDLS, a couple of fast entropy-based estimators of compression effects that may be used independently of the actual compression algorithm are investigated and an immediate filter selection method based on the detector precision characteristic model driven by image acquisition parameters is introduced.

Funder

Institute of Informatics, Silesian University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3