Abstract
The primary purpose of the reported research was to improve the discrete wavelet transform (DWT)-based JP3D compression of volumetric medical images by applying new methods that were only previously used in the compression of two-dimensional (2D) images. Namely, we applied reversible denoising and lifting steps with step skipping to three-dimensional (3D)-DWT and constructed a hybrid transform that combined 3D-DWT with prediction. We evaluated these methods using a test-set containing images of modalities: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasound (US). They proved effective for 3D data resulting in over two times greater compression ratio improvements than competitive methods. While employing fast entropy estimation of JP3D compression ratio to reduce the cost of image-adaptive parameter selection for the new methods, we found that some MRI images had sparse histograms of intensity levels. We applied the classical histogram packing (HP) and found that, on average, it resulted in greater ratio improvements than the new sophisticated methods and that it could be combined with these new methods to further improve ratios. Finally, we proposed a few practical compression schemes that exploited HP, entropy estimation, and the new methods; on average, they improved the compression ratio by up to about 6.5% at an acceptable cost.
Subject
General Physics and Astronomy
Reference39 articles.
1. What is different about medical image compression?;Clunie;IEEE Commun. Soc. MMTC E-Lett.,2011
2. The Current Role of Image Compression Standards in Medical Imaging
3. Trends in Medical Image Compression
4. JPEG2000 Image Compression Fundamentals, Standards and Practice
5. Information Technology—JPEG 2000 Image Coding System: Core coding System,2019
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献