Employing New Hybrid Adaptive Wavelet-Based Transform and Histogram Packing to Improve JP3D Compression of Volumetric Medical Images

Author:

Starosolski RomanORCID

Abstract

The primary purpose of the reported research was to improve the discrete wavelet transform (DWT)-based JP3D compression of volumetric medical images by applying new methods that were only previously used in the compression of two-dimensional (2D) images. Namely, we applied reversible denoising and lifting steps with step skipping to three-dimensional (3D)-DWT and constructed a hybrid transform that combined 3D-DWT with prediction. We evaluated these methods using a test-set containing images of modalities: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasound (US). They proved effective for 3D data resulting in over two times greater compression ratio improvements than competitive methods. While employing fast entropy estimation of JP3D compression ratio to reduce the cost of image-adaptive parameter selection for the new methods, we found that some MRI images had sparse histograms of intensity levels. We applied the classical histogram packing (HP) and found that, on average, it resulted in greater ratio improvements than the new sophisticated methods and that it could be combined with these new methods to further improve ratios. Finally, we proposed a few practical compression schemes that exploited HP, entropy estimation, and the new methods; on average, they improved the compression ratio by up to about 6.5% at an acceptable cost.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference39 articles.

1. What is different about medical image compression?;Clunie;IEEE Commun. Soc. MMTC E-Lett.,2011

2. The Current Role of Image Compression Standards in Medical Imaging

3. Trends in Medical Image Compression

4. JPEG2000 Image Compression Fundamentals, Standards and Practice

5. Information Technology—JPEG 2000 Image Coding System: Core coding System,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3