ECG based one-dimensional residual deep convolutional auto-encoder model for heart disease classification
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-18009-7.pdf
Reference32 articles.
1. Akdağ S, Kuncan F, Kaya Y (2022) A new approach for congestive heart failure and arrhythmia classification using downsampling local binary patterns with LSTM. Turk J Electr Eng Comput Sci 30(6):2145–2164
2. Jiao Y, Qi H, Wu J (2022) Capsule network assisted electrocardiogram classification model for smart healthcare. Biocybern Biomed Eng 42(2):543–555
3. Rashed-Al-Mahfuz M, Moni MA, Lio P, Islam SMS, Berkovsky S, Khushi M, Quinn JM (2021) Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. Biomed Eng Lett 11:147–162
4. Tripathi PM, Kumar A, Kumar M, Komaragiri R (2022) Multilevel classification and detection of cardiac arrhythmias with high-resolution superlet transform and deep convolution neural network. IEEE Trans Instrum Meas 71:1–13
5. Çalışkan A (2022) A new ensemble approach for congestive heart failure and arrhythmia classification using shifted one-dimensional local binary patterns with long short-term memory. Comput J 65(9):2535–2546
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fortifying Patient Data Security in the Digital Era: A Two-Layer Approach with Data Hiding and Electrocardiogram;ICST Transactions on Scalable Information Systems;2024-07-15
2. Comparative Analysis of Boosting Algorithms for Contactor Fault Classification from Fiber Bragg Grating Sensor Signals;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10
3. Certain investigation on hybrid neural network method for classification of ECG signal with the suitable a FIR filter;Scientific Reports;2024-07-02
4. Cardiac Arrhythmia Diagnosis Using Deep Learning: A 1D CNN-GRU Approach with Multiclass SVM and DWT Analysis;2024 Tenth International Conference on Bio Signals, Images, and Instrumentation (ICBSII);2024-03-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3