Certain investigation on hybrid neural network method for classification of ECG signal with the suitable a FIR filter

Author:

Jayaraman Rajendiran Dinesh Kumar,Ganesh Babu C.,Priyadharsini K.,Karthi S. P.

Abstract

AbstractThe Electrocardiogram (ECG) records are crucial for predicting heart diseases and evaluating patient’s health conditions. ECG signals provide essential peak values that reflect reliable health information. Analyzing ECG signals is a fundamental technique for computerized prediction with advancements in Very Large-Scale Integration (VLSI) technology and significantly impacts in biomedical signal processing. VLSI advancements focus on high-speed circuit functionality while minimizing power consumption and area occupancy. In ECG signal denoising, digital filters like Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) are commonly used. The FIR filters are preferred for their higher-order performance and stability over IIR filters, especially in real-time applications. The Modified FIR (MFIR) blocks were reconstructed using the optimized adder-multiplier block for better noise reduction performance. The MIT-BIT database is used as reference where the noises are filtered by the MFIR based on Optimized Kogge Stone Adder (OKSA). Features are extracted and analyzed using Discrete wavelet transform (DWT) and Cross Correlation (CC). At this modern era, Hybrid methods of Machine Learning (HMLM) methods are preferred because of their combined performance which is better than non-fused methods. The accuracy of the Hybrid Neural Network (HNN) model reached 92.3%, surpassing other models such as Generalized Sequential Neural Networks (GSNN), Artificial Neural Networks (ANN), Support Vector Machine with linear kernel (SVM linear), and Support Vector Machine with Radial Basis Function kernel (SVM RBF) by margins of 3.3%, 5.3%, 23.3%, and 24.3%, respectively. While the precision of the HNN is 91.1%, it was slightly lower than GSNN and ANN but higher than both SVM linear and SVM -RBF. The HNN with various features are incorporated to improve the ECG classification. The accuracy of the HNN is switched to 95.99% when the DWT and CC are combined. Also, it improvises other parameters such as precision 93.88%, recall is 0.94, F1 score is 0.88, Kappa is 0.89, kurtosis is 1.54, skewness is 1.52 and error rate 0.076. These parameters are higher than recently developed models whose algorithms and methods accuracy is more than 90%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3