A New Ensemble Approach for Congestive Heart Failure and Arrhythmia Classification Using Shifted One-Dimensional Local Binary Patterns with Long Short-Term Memory

Author:

Çalışkan Abidin12ORCID

Affiliation:

1. Engineering Faculty , Department of Computer Engineering, , Batman 72060 , Turkey

2. Batman University , Department of Computer Engineering, , Batman 72060 , Turkey

Abstract

Abstract The electrocardiogram (ECG) is a vital diagnostic tool for identifying a variety of cardiac disorders, including cardiac arrhythmia (ARR), sinus rhythms and heart failure. However, rapid interpretation of ECG recordings is quite important in the diagnosis of heart-related diseases. Many patients can be saved using the systems developed for the rapid and accurate analysis of ECG signals. A novel ensemble method based on shifted one-dimensional local binary patterns (S-1D-LBP) and long short-term memory (LSTM) is presented for the prognosis of ARR, normal sinus rhythm (NSR) and congestive heart failure (CHF) in this study. The ECG signals were first subjected to the S-1D-LBP method. Depending on the R and L parameters of this method, nine different signals are generated. Each of the histograms of these signals is given to LSTM models with the same hyperparameters. ECG signals are classified according to the common decisions of LSTM models with nine different input signals. The suggested method was tested using ECG signals (ARR, NSR and CHF) from the MIT-BIH and BIDMC datasets. Considering the results obtained in the applications carried out with various scenarios, it was observed that a high (99.6%) success rate was attained by the proposed approach. The suggested S-1D-LBP + ELSTM (Ensemble LSTM) model is expected to be safe to employ in the classification of various signals.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3