Author:
Farahat Asmaa,Hussein Khlaid
Abstract
In this paper, a dual-band (28/38 GHz) linear antenna arrays of four and eight elements are proposed to work as a MIMO arrays for the 5G communication systems. Each element in the array is a dual-band Yagi-Uda antenna designed to operate at 28 and 38 GHz. The eight-elements array size has a total dimension of 79.4 mm x 9.65 mm excluding the feeding microstrip line. The maximum gain of the array is about 18 dB. The
peaks of correlation at matched angles (PCMA) technique is applied to determine the direction of arrival for multiple incoming signals. The effects of phase noise and additive
Gaussian noise on the error in the DoA estimation are studied showing good accuracy of the PCMA algorithm. Numerical and experimental investigations are achieved to assess the performance of both the single-element antenna and the eight-element MIMO linear antenna array. It is shown that the simulation results agree with the experimental measurements and both show good performance of the single antenna as well as the MIMO linear array system. The envelope correlation coefficient (ECC) and the diversity gain (DG) are calculated and the results show that the proposed MIMO antenna system is
suitable for the forthcoming 5G mobile communications.
The radiation patterns for single antenna and four-element
array are measured and compared to the electromagnetic
simulation results showing good agreement.
Subject
Electrical and Electronic Engineering,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献