Low mutual coupling miniaturized dual-band quad-port MIMO antenna array using decoupling structure for 5G smartphones

Author:

Elabd Rania Hamdy,Al-Gburi Ahmed Jamal Abdullah

Abstract

AbstractMaintaining the compactness of 5G smartphones while accommodating millimeter-wave (mm-wave) bands presents a significant challenge due to the substantial difference in frequency. To tackle this issue, we introduce a miniaturized quad-port dual-band multiple-input, multiple-output (MIMO) antenna with low mutual coupling (MC) and a considerable frequency difference. This quad-port MIMO antenna, built on a Rogers TMM4 substrate, measures 17.76 × 17.76 mm2 and boasts a dielectric constant of 4.5. It incorporates four planar patch antennas, positioned at the corners in perpendicular orientations. For dual-band operation at 28/38 GHz, each antenna element features a rectangular patch with four rectangular slots, complemented by a full ground plane. The spacing between these elements is 0.5 λo, and we've included a decoupling structure (DS) to minimize mutual coupling (MC) among the MIMO antenna elements with minimal complexity and cost. Simulation and measurement results reveal a significant reduction in mutual coupling between the array elements, ranging from − 25 to − 60 dB. As a result, we’ve developed the envelope correlation coefficient (ECC) and made advancements in the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). The measured gains for this design are approximately 8.9 dBi at both 28 GHz and 38 GHz, with a radiation efficiency of nearly 93%. Furthermore, specific absorption rate (SAR) analysis confirms the MIMO antenna's suitability for smartphone handsets operating within the target frequency band.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3