High-performance MTM inspired two-port MIMO antenna structure for 5G/IoT applications

Author:

Hamdan Samia1,Hamad Ehab K. I.2,Mohamed Hesham A.3,Khaleel Sherif A.4

Affiliation:

1. Electronics & Comm. Dept ., Luxor Higher Institute of Engineering & Technology , Luxor , Egypt

2. Electrical Engineering Department, Faculty of Engineering , Aswan University , Aswan , Egypt

3. Microstrip Circuits Department , Electronics Research Institute , Elnozha, Cairo 11843 , Egypt

4. Department of Electronics & Communications Engineering , College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT) , Aswan , Egypt

Abstract

Abstract This study thoroughly investigates a two-port multiple-input multiple-output (MIMO) antenna system tailored for 5G operation at 28 GHz. The proposed antenna is patched on a Rogers (RT5880) substrate with a relative permittivity of 2.2 and total size of 20×12×0.508 mm3. The mutual relationship between the radiating patches is refined using an H-shaped metamaterial structure to reduce the isolation to –55 dB. A MIMO configuration with attractive features is employed to reduce the envelope correlation coefficient (ECC) to about 0.00062 and the channel capacity loss (CCL) to about 0.006 bits/sec/Hz, while magnify the gain to about 9.39 dBi and the diversity gain (DG) to about 9.995. Additionally, it boasts a compact size with stable radiation pattern. The simulations of the MIMO antenna are executed using CST microwave studio, subsequently validated with Advanced Design System (ADS) for an equivalent circuit model, then measured using Vector Network Analyzer. Discrepancies between measured and simulated results were analyzed, with observed variations attributed to cable losses and manufacturing tolerances. Despite these challenges, a comprehensive comparison with prior research highlights the notable advantages of the proposed design, positioning it as a compelling solution for 5G applications.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3