Distinct Signals Regulate AS160 Phosphorylation in Response to Insulin, AICAR, and Contraction in Mouse Skeletal Muscle

Author:

Kramer Henning F.1,Witczak Carol A.1,Fujii Nobuharu1,Jessen Niels1,Taylor Eric B.1,Arnolds David E.1,Sakamoto Kei1,Hirshman Michael F.1,Goodyear Laurie J.12

Affiliation:

1. Metabolism Research Division, Joslin Diabetes Center, Boston, Massachusetts

2. Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

Insulin and contraction increase GLUT4 translocation in skeletal muscle via distinct signaling mechanisms. Akt substrate of 160 kDa (AS160) mediates insulin-stimulated GLUT4 translocation in L6 myotubes, presumably through activation of Akt. Using in vivo, in vitro, and in situ methods, insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR all increased AS160 phosphorylation in mouse skeletal muscle. Insulin-stimulated AS160 phosphorylation was fully blunted by wortmannin in vitro and in Akt2 knockout (KO) mice in vivo. In contrast, contraction-stimulated AS160 phosphorylation was only partially decreased by wortmannin and unaffected in Akt2 KO mice, suggesting additional regulatory mechanisms. To determine if AMPK mediates AS160 signaling, we used AMPK α2-inactive (α2i) transgenic mice. AICAR-stimulated AS160 phosphorylation was fully inhibited, whereas contraction-stimulated AS160 phosphorylation was partially reduced in the AMPK α2i transgenic mice. Combined AMPK α2 and Akt inhibition by wortmannin treatment of AMPK α2 transgenic mice did not fully ablate contraction-stimulated AS160 phosphorylation. Maximal insulin, together with either AICAR or contraction, increased AS160 phosphorylation in an additive manner. In conclusion, AS160 may be a point of convergence linking insulin, contraction, and AICAR signaling. While Akt and AMPK α2 activities are essential for AS160 phosphorylation by insulin and AICAR, respectively, neither kinase is indispensable for the entire effects of contraction on AS160 phosphorylation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3