Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes.

Author:

Kennedy J W1,Hirshman M F1,Gervino E V1,Ocel J V1,Forse R A1,Hoenig S J1,Aronson D1,Goodyear L J1,Horton E S1

Affiliation:

1. Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.

Abstract

Total GLUT4 content in skeletal muscle from individuals with type 2 diabetes is normal; however, recent studies have demonstrated that translocation of GLUT4 to the plasma membrane is decreased in response to insulin stimulation. It is not known whether physical exercise stimulates GLUT4 translocation in skeletal muscle of individuals with type 2 diabetes. Five subjects (two men, three women) with type 2 diabetes and five normal control subjects (5 men), as determined by a standard 75-g oral glucose tolerance test, were recruited to determine whether an acute bout of cycle exercise activates the translocation of GLUT4 to the plasma membrane in skeletal muscle. Each subject had two open biopsies of vastus lateralis muscle; one at rest and one 3-6 weeks later from the opposite leg after 45-60 min of cycle exercise at 60-70% of VO2max. Skeletal muscle plasma membranes were prepared by subcellular fractionation, and GLUT4 content was determined by Western blotting. Plasma membrane GLUT4 increased in each subject in response to exercise. The mean increase in plasma membrane GLUT4 for the subjects with type 2 diabetes was 74 +/-20% above resting values, and for the normal subjects the increase was 71+/-18% above resting values. Although plasma membrane GLUT4 content was approximately 32% lower at rest and after exercise in the muscle of the subjects with type 2 diabetes, the differences were not statistically significant. We conclude that in contrast to the previously reported defect in insulin-stimulated GLUT4 translocation in skeletal muscle of individuals with type 2 diabetes, a single bout of exercise results in the translocation of GLUT4 to the plasma membrane in skeletal muscle of individuals with type 2 diabetes. These data provide the first direct evidence that GLUT4 translocation is an important cellular mechanism through which exercise enhances skeletal muscle glucose uptake in individuals with type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 306 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3