Inducible Nitric Oxide Synthase Induction Underlies Lipid-Induced Hepatic Insulin Resistance in Mice

Author:

Charbonneau Alexandre1,Marette André1

Affiliation:

1. From the Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada, and Centre Hospitalier Universitaire de Québec, Axe Métabolisme, Santé Vasculaire et Rénale, Department of Medicine, Laval University, Québec, Canada.

Abstract

OBJECTIVE The present study was undertaken to assess the contribution of inducible nitric oxide (NO) synthase (iNOS) to lipid-induced insulin resistance in vivo. RESEARCH DESIGN AND METHODS Wild-type and iNOS−/− mice were infused for 6 h with a 20% intralipid emulsion, during which a hyperinsulinemic-euglycemic clamp was performed. RESULTS In wild-type mice, lipid infusion led to elevated basal hepatic glucose production and marked insulin resistance as revealed by impaired suppression of liver glucose production and reduced peripheral glucose disposal (Rd) during insulin infusion. Liver insulin resistance was associated with a robust induction of hepatic iNOS, reduced tyrosine phosphorylation of insulin receptor (IR) β, insulin receptor substrate (IRS)-1, and IRS-2 but elevated serine phosphorylation of IRS proteins as well as decreased Akt activation. The expression of gluconeogenic enzymes Pepck and G6Pc was also increased in the liver of wild-type mice. In contrast to their wild-type counterparts, iNOS−/− mice were protected from lipid-induced hepatic and peripheral insulin resistance. Moreover, neither the phosphorylation of insulin signaling intermediates nor expression of gluconeogenic enzymes were altered in the lipid-infused iNOS−/− mice compared with their saline-infused controls. Importantly, lipid infusion induced tyrosine nitration of IRβ, IRS-1, IRS-2, and Akt in wild-type mice but not in iNOS−/− animals. Furthermore, tyrosine nitration of hepatic Akt by the NO derivative peroxynitrite blunted insulin-induced Akt tyrosine phosphorylation and kinase activity. CONCLUSIONS These findings demonstrate that iNOS induction is a novel mechanism by which circulating lipids inhibit hepatic insulin action. Our results further suggest that iNOS may cause hepatic insulin resistance through tyrosine nitration of key insulin signaling proteins.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3