Inducible Nitric Oxide Synthase Has Divergent Effects on Vascular and Metabolic Function in Obesity

Author:

Noronha Brian T.1,Li Jian-Mei1,Wheatcroft Stephen B.1,Shah Ajay M.1,Kearney Mark T.1

Affiliation:

1. Cardiovascular Division, King’s College London, London, U.K

Abstract

Previous studies have suggested an involvement of inducible nitric oxide synthase (iNOS) in obesity, but the relation, if any, between this and mechanisms underlying endothelial dysfunction in obesity is unknown. We studied mice fed an obesogenic high-fat or standard diet for up to 8 weeks. Obesity was associated with elevated blood pressure; resistance to the glucoregulatory actions of insulin; resistance to the vascular actions of insulin, assessed as the reduction in phenylephrine constrictor response of aortic rings after insulin preincubation (lean −21.7 ± 11.5 vs. obese 18.2 ± 15.5%; P < 0.05); and evidence of reactive oxygen species (ROS)-dependent vasodilatation in response to acetylcholine in aortic rings (change in maximal relaxation to acetylcholine after exposure to catalase: lean −2.1 ± 6.0 vs. obese −15.0 ± 3.8%; P = 0.04). Obese mice had increased expression of iNOS in aorta, with evidence of increased vascular NO production, assessed as the increase in maximal constriction to phenylephrine after iNOS inhibition with 1400W (lean −3.5 ± 9.1 vs. obese 42.1 ± 11.2%; P < 0.001). To further address the role of iNOS in obesity-induced vascular and metabolic dysfunction, we studied the effect of a high-fat diet in iNOS knockout mice (iNOS KO). Obese iNOS KO mice were protected against the development of resistance to insulin’s glucoregulatory and vascular effects (insulin-dependent reduction in maximal phenylephrine response: obese wild-type 11.2 ± 15.0 vs. obese iNOS KO −20.0 ± 7.7%; P = 0.02). However, obese iNOS KO mice remained hypertensive (124.0 ± 0.7 vs. 114.9 ± 0.5 mmHg; P < 0.01) and had evidence of increased vascular ROS production. Although these data support iNOS as a target to protect against the adverse effects of obesity on glucoregulation and vascular insulin resistance, iNOS inhibition does not prevent the development of raised blood pressure or oxidative stress.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3