In Vivo Effects of Insulin and Free Fatty Acids on Matrix Metalloproteinases in Rat Aorta

Author:

Boden Guenther1,Song Weiwei1,Pashko Laura1,Kresge Karen1

Affiliation:

1. From the Division Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, Pennsylvania

Abstract

OBJECTIVE—Obesity is associated with insulin resistance, hyperinsulinemia, elevated plasma free fatty acid (FFA), and increased risk for atherosclerotic vascular disease (ASVD). A part of this increased risk may be due to enhanced activation of matrix metalloproteinases (MMPs). Here, we have examined the effects of physiologically elevated levels of insulin and FFA on three MMPs and their inhibitors (tissue inhibitors of MMP [TIMPs]) in aortic tissue of male rats during euglycemic-hyperinsulinemic clamping. RESEARCH DESIGN AND METHODS—Four-hour euglycemic-hyperinsulinemic clamps with infusion of saline/glycerol, lipid/heparin, or insulin with or without lipid/heparin were performed in alert unrestrained male rats. RESULTS—Hyperinsulinemia increased MMP-2 (∼6-fold), MMP-9 (∼13-fold), membrane type 1-MMP (MT1-MMP; ∼8-fold) (all Western blots), and gelatinolytic activity (zymography) of MMP-2 (2-fold), while not affecting TIMP-1 and TIMP-2. Insulin increased IRS-1–associated PI 3-kinase (PI3K), extracellular signal–regulated kinases 1/2 (ERK1/2), and c-jun NH2-terminal kinase (JNK) (by Western blots with phospho-specific antibodies). FFA augmented the insulin-mediated increases in MMP-2 (from ∼6- to ∼11-fold), MMP-9 (from ∼3- to ∼23-fold), MT1-MMP (from ∼8- to ∼20-fold), MMP-2 gelatinolytic activity (from 2- to 3-fold), and JNK and p38 mitogen-activated protein kinase (MAPK) activities but decreased insulin-mediated activation of PI3K and ERK1/2. Raising FFA without raising insulin affected neither MMPs nor TIMPs. CONCLUSIONS—FFA augmented insulin stimulation of the MMP/TIMP balance of three proatherogenic MMPs and increased activities of two MAPKs (JNK and p38 MAPK), both of which are known to stimulate the production of proinflammatory cytokines. This may, over time, increase degradation of extracellular matrix and together with inflammatory changes promote development of ASVD.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3