Role of Insulin Resistance in Human Disease

Author:

Reaven Gerald M1

Affiliation:

1. Department of Medicine, Stanford University Medical Center; and the Geriatric Research, Education and Clinical Center, Veterans Administration Medical Center Palo Alto, California

Abstract

Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in ∼25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the β-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration.Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulinstimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one. However, even if insulin resistance and hyperinsulinemia are not involved in the etiology of hypertension, it is likely that the increased risk of coronary artery disease (CAD) in patients with hypertension and the fact that this risk if not reduced with antihypertensive treatment are due to the clustering of risk factors for CAD, in addition to high blood pressure, associated with insulin resistance. These include hyperinsulinemia, IGT, increased plasma triglyceride concentration, and decreased high-density lipoprotein cholesterol concentration, all of which are associated with increased risk for CAD. It is likely that the same risk factors play a significant role in the genesis of CAD in the population as a whole. Based on these considerations the possibility is raised that resistance to insulin-stimulated glucose uptake and hyperinsulinemia are involved in the etiology and clinical course of three major related diseases— NIDDM, hypertension, and CAD.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 5672 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3