Increased Expression of Antioxidant and Antiapoptotic Genes in Islets That May Contribute to β-Cell Survival During Chronic Hyperglycemia

Author:

Laybutt D. Ross1,Kaneto Hideaki1,Hasenkamp Wendy1,Grey Shane2,Jonas Jean-Christophe1,Sgroi Dennis C.3,Groff Adam1,Ferran Christiane2,Bonner-Weir Susan1,Sharma Arun1,Weir Gordon C.1

Affiliation:

1. Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, Massachusetts

2. Immunobiology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts

3. Molecular Pathology Unit, Massachusetts General Hospital, Boston, Massachusetts

Abstract

Hypertrophy is one mechanism of pancreatic β-cell growth and is seen as an important compensatory response to insulin resistance. We hypothesized that the induction of protective genes contributes to the survival of enlarged (hypertrophied) β-cells. Here, we evaluated changes in stress gene expression that accompany β-cell hypertrophy in islets from hyperglycemic rats 4 weeks after partial pancreatectomy (Px). A variety of protective genes were upregulated, with markedly increased expression of the antioxidant genes heme oxygenase-1 and glutathione peroxidase and the antiapoptotic gene A20. Cu/Zn-superoxide dismutase (SOD) and Mn-SOD were modestly induced, and Bcl-2 was modestly reduced; however, several other stress genes (catalase, heat shock protein 70, and p53) were unaltered. The increases in mRNA levels corresponded to the degree of hyperglycemia and were reversed in Px rats by 2-week treatment with phlorizin (treatment that normalized hyperglycemia), strongly suggesting the specificity of hyperglycemia in eliciting the response. Hyperglycemia in Px rats also led to activation of nuclear factor-κB in islets. The profound change in β-cell phenotype of hyperglycemic Px rats resulted in a reduced sensitivity to the β-cell toxin streptozotocin. Sensitivity to the toxin was restored, along with the β-cell phenotype, in islets from phlorizin-treated Px rats. Furthermore, β-cells of Px rats were not vulnerable to apoptosis when further challenged in vivo with dexamethasone, which increases insulin resistance. In conclusion, β-cell adaptation to chronic hyperglycemia and, hence, increased insulin demand is accompanied by the induction of protective stress genes that may contribute to the survival of hypertrophied β-cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3